The 5-canonical System on 3-folds of General Type

نویسندگان

  • JUNGKAI A. CHEN
  • MENG CHEN
چکیده

Let X be a projective minimal Gorenstein 3-fold of general type with canonical singularities. We prove that the 5canonical map is birational onto its image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 4 . 17 02 v 3 [ m at h . A G ] 2 7 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ar X iv : 0 70 4 . 17 02 v 2 [ m at h . A G ] 2 6 Ju n 20 08 THE CANONICAL VOLUME OF 3 - FOLDS OF GENERAL TYPE WITH χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

On the Relative Pluricanonical Stability for 3-folds of General Type

The aim of this paper is to improve a theorem of János Kollár by a different method. Given a Complex projective threefold X of general type, suppose the plurigenus Pk(X) ≥ 2, Kollár proved that the (11k+5)-canonical map is birational. Here we show that either the (7k +3)-canonical map or the (7k +5)-canonical map is birational and the m-canonical map is stably birational for m ≥ 13k+6. If we su...

متن کامل

Abelian Automorphism Groups of 3-folds of General Type

This paper is devoted to the study of abelian automorphism groups of surfaces and 3-folds of general type over complex number field C. We obtain a linear bound in K3 for abelian automorphism groups of 3-folds of general type whose canonical divisor K is numerically effective, and we improve on Xiao’s results on abelian automorphism groups of minimal smooth projective surfaces of general type. M...

متن کامل

The Canonical Volume of 3-folds of General Type with Χ ≤ 0

We prove that the canonical volume K ≥ 1 30 for all 3-folds of general type with χ(O) ≤ 0. This bound is sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007